Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 561
Filtrar
1.
Nutrients ; 13(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34836123

RESUMO

Here, we present the first in silico and in vitro evidence of Aß-like peptides released from meaningful members of the gut microbiome (mostly from the Clostridiales order). Two peptides with high homology to the human Aß peptide domain were synthesized and tested in vitro in a neuron cell-line model. Gene expression profile analysis showed that one of them induced whole gene pathways related to AD, opening the way to translational approaches to assess whether gut microbiota-derived peptides might be implicated in the neurodegenerative processes related to AD. This exploratory work opens the path to new approaches for understanding the relationship between the gut microbiome and the triggering of potential molecular events leading to AD. As microbiota can be modified using diet, tools for precise nutritional intervention or targeted microbiota modification in animal models might help us to understand the individual roles of gut bacteria releasing Aß-like peptides and therefore their contribution to this progressive disease.


Assuntos
Doença de Alzheimer/microbiologia , Peptídeos beta-Amiloides/metabolismo , Microbioma Gastrointestinal/genética , Neurônios/microbiologia , Animais , Linhagem Celular , Humanos , Transdução de Sinais/genética , Transcriptoma
2.
Cells ; 10(9)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34571999

RESUMO

Like all invertebrates, flies such as Drosophila lack an adaptive immune system and depend on their innate immune system to protect them against pathogenic microorganisms and parasites. In recent years, it appears that the nervous systems of eucaryotes not only control animal behavior but also cooperate and synergize very strongly with the animals' immune systems to detect and fight potential pathogenic threats, and allow them to adapt their behavior to the presence of microorganisms and parasites that coexist with them. This review puts into perspective the latest progress made using the Drosophila model system, in this field of research, which remains in its infancy.


Assuntos
Drosophila/imunologia , Microbiota/imunologia , Neurônios/imunologia , Parasitos/imunologia , Imunidade Adaptativa/imunologia , Animais , Drosophila/microbiologia , Drosophila/parasitologia , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata/imunologia , Neurônios/microbiologia , Neurônios/parasitologia
3.
Int J Mol Sci ; 22(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34281258

RESUMO

Infection by Proteus mirabilis causes urinary stones and catheter incrustation due to ammonia formed by urease (PMU), one of its virulence factors. Non-enzymatic properties, such as pro-inflammatory and neurotoxic activities, were previously reported for distinct ureases, including that of the gastric pathogen Helicobacter pylori. Here, PMU was assayed on isolated cells to evaluate its non-enzymatic properties. Purified PMU (nanomolar range) was tested in human (platelets, HEK293 and SH-SY5Y) cells, and in murine microglia (BV-2). PMU promoted platelet aggregation. It did not affect cellular viability and no ammonia was detected in the cultures' supernatants. PMU-treated HEK293 cells acquired a pro-inflammatory phenotype, producing reactive oxygen species (ROS) and cytokines IL-1ß and TNF-α. SH-SY5Y cells stimulated with PMU showed high levels of intracellular Ca2+ and ROS production, but unlike BV-2 cells, SH-SY5Y did not synthesize TNF-α and IL-1ß. Texas Red-labeled PMU was found in the cytoplasm and in the nucleus of all cell types. Bioinformatic analysis revealed two bipartite nuclear localization sequences in PMU. We have shown that PMU, besides urinary stone formation, can potentially contribute in other ways to pathogenesis. Our data suggest that PMU triggers pro-inflammatory effects and may affect cells beyond the renal system, indicating a possible role in extra-urinary diseases.


Assuntos
Proteus mirabilis/enzimologia , Proteus mirabilis/patogenicidade , Urease/metabolismo , Urease/toxicidade , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/microbiologia , Modelos Moleculares , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/microbiologia , Neurotoxinas/química , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Sinais de Localização Nuclear , Agregação Plaquetária/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Urease/química , Virulência/fisiologia
4.
Dev Cell ; 56(12): 1770-1785.e12, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33984269

RESUMO

Mitochondrial functions across different tissues are regulated in a coordinated fashion to optimize the fitness of an organism. Mitochondrial unfolded protein response (UPRmt) can be nonautonomously elicited by mitochondrial perturbation in neurons, but neuronal signals that propagate such response and its physiological significance remain incompletely understood. Here, we show that in C. elegans, loss of neuronal fzo-1/mitofusin induces nonautonomous UPRmt through multiple neurotransmitters and neurohormones, including acetylcholine, serotonin, glutamate, tyramine, and insulin-like peptides. Neuronal fzo-1 depletion also triggers nonautonomous mitochondrial fragmentation, which requires autophagy and mitophagy genes. Systemic activation of UPRmt and mitochondrial fragmentation in C. elegans via perturbing neuronal mitochondrial dynamics improves resistance to pathogenic Pseudomonas infection, which is supported by transcriptomic signatures of immunity and stress-response genes. We propose that C. elegans surveils neuronal mitochondrial dynamics to coordinate systemic UPRmt and mitochondrial connectivity for pathogen defense and optimized survival under bacterial infection.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , GTP Fosfo-Hidrolases/genética , Mitocôndrias/genética , Neurônios/microbiologia , Animais , Autofagia/genética , Caenorhabditis elegans/microbiologia , Interações Hospedeiro-Parasita/genética , Mitocôndrias/microbiologia , Dinâmica Mitocondrial/genética , Mitofagia/genética , Neurônios/metabolismo , Pseudomonas/genética , Pseudomonas/patogenicidade , Estresse Fisiológico/genética , Resposta a Proteínas não Dobradas/genética
5.
J Mol Neurosci ; 71(7): 1506-1514, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33763842

RESUMO

Accumulation of amyloid-ß (Aß) in the brain is a central component of pathology in Alzheimer's disease. A growing volume of evidence demonstrates close associations between periodontal pathogens including Porphyromonas gingivalis (P. gingivalis) and Treponema denticola (T. denticola) and AD. However, the effect and mechanisms of T. denticola on accumulation of Aß remain to be unclear. In this study, we demonstrated that T. denticola was able to enter the brain and act directly on nerve cells resulting in intra- and extracellular Aß1-40 and Aß1-42 accumulation in the hippocampus of C57BL/6 mice by selectively activating both ß-secretase and γ-secretase. Furthermore, both KMI1303, an inhibitor of ß-secretase, as well as DAPT, an inhibitor of γ- secretase, were found to be able to inhibit the effect of T. denticola on Aß accumulation in N2a neuronal cells. Overall, it is concluded that T. denticola increases the expression of Aß1-42 and Aß1-40 by its regulation on beta-site amyloid precursor protein cleaving enzyme-1 and presenilin 1.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Hipocampo/metabolismo , Boca/microbiologia , Fragmentos de Peptídeos/biossíntese , Treponema denticola/patogenicidade , Infecções por Treponema/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/biossíntese , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Aorta/microbiologia , Ácido Aspártico Endopeptidases/biossíntese , Ácido Aspártico Endopeptidases/genética , Diaminas/farmacologia , Ativação Enzimática , Hipocampo/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/microbiologia , Porphyromonas gingivalis/patogenicidade , Presenilina-1/biossíntese , Presenilina-1/genética , Distribuição Aleatória , Tiazóis/farmacologia , Infecções por Treponema/patologia , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/microbiologia
6.
Physiol Rep ; 8(21): e14611, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33185323

RESUMO

BACKGROUND: Intestinal bacteria have been increasingly shown to be involved in early postnatal development. Previous work has shown that intestinal bacteria are necessary for the structural development and intrinsic function of the enteric nervous system in early postnatal life. Furthermore, colonization with a limited number of bacteria appears to be sufficient for the formation of a normal enteric nervous system. We tested the hypothesis that common bacterial components could influence the programming of developing enteric neurons. METHODS: The developmental programming of enteric neurons was studied by isolating enteric neural crest-derived cells from the fetal gut of C57Bl/6 mice at embryonic day 15.5. After the establishment of the cell line, cultured enteric neuronal precursors were exposed to increasing concentrations of a panel of bacterial components including lipopolysaccharide, flagellin, and components of peptidoglycan. KEY RESULT: Exposure to bacterial components consistently affected proportions of enteric neuronal precursors that developed into nitrergic neurons. Furthermore, flagellin and D-gamma-Glu-mDAP were found to promote the development of serotonergic neurons. Proportions of dopaminergic neurons remained unchanged. Proliferation of neuronal precursor cells was significantly increased upon exposure to lipopolysaccharide and flagellin, while no significant changes were observed in the proportion of apoptotic neuronal precursors compared to baseline with exposure to any bacterial component. CONCLUSIONS AND INTERFACES: These findings suggest that bacterial components may influence the development of enteric neurons.


Assuntos
Bactérias/metabolismo , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/microbiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/microbiologia , Animais , Apoptose , Diferenciação Celular/fisiologia , Células Cultivadas , Sistema Nervoso Entérico/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Gravidez
7.
Nutrients ; 12(9)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927823

RESUMO

Persistence of Gulf War illness (GWI) pathology among deployed veterans is a clinical challenge even after almost three decades. Recent studies show a higher prevalence of obesity and metabolic disturbances among Gulf War veterans primarily due to the existence of post-traumatic stress disorder (PTSD), chronic fatigue, sedentary lifestyle, and consumption of a high-carbohydrate/high-fat diet. We test the hypothesis that obesity from a Western-style diet alters host gut microbial species and worsens gastrointestinal and neuroinflammatory symptom persistence. We used a 5 month Western diet feeding in mice that received prior Gulf War (GW) chemical exposure to mimic the home phase obese phenotype of the deployed GW veterans. The host microbial profile in the Western diet-fed GWI mice showed a significant decrease in butyrogenic and immune health-restoring bacteria. The altered microbiome was associated with increased levels of IL6 in the serum, Claudin-2, IL6, and IL1ß in the distal intestine with concurrent inflammatory lesions in the liver and hyperinsulinemia. Microbial dysbiosis was also associated with frontal cortex levels of increased IL6 and IL1ß, activated microglia, decreased levels of brain derived neurotrophic factor (BDNF), and higher accumulation of phosphorylated Tau, an indicator of neuroinflammation-led increased risk of cognitive deficiencies. Mechanistically, serum from Western diet-fed mice with GWI significantly increased microglial activation in transformed microglial cells, increased tyrosyl radicals, and secreted IL6. Collectively, the results suggest that an existing obese phenotype in GWI worsens persistent gastrointestinal and neuronal inflammation, which may contribute to poor outcomes in restoring cognitive function and resolving fatigue, leading to the deterioration of quality of life.


Assuntos
Microbioma Gastrointestinal/fisiologia , Obesidade/microbiologia , Obesidade/patologia , Síndrome do Golfo Pérsico/microbiologia , Síndrome do Golfo Pérsico/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Disbiose/complicações , Disbiose/microbiologia , Disbiose/patologia , Gastroenterite/complicações , Gastroenterite/microbiologia , Gastroenterite/patologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Hepatite/complicações , Hepatite/microbiologia , Hepatite/patologia , Inflamação , Fígado/microbiologia , Fígado/patologia , Camundongos , Neurite (Inflamação)/complicações , Neurite (Inflamação)/microbiologia , Neurite (Inflamação)/patologia , Neurônios/microbiologia , Neurônios/patologia , Obesidade/complicações , Síndrome do Golfo Pérsico/complicações
8.
Brain Res ; 1747: 147056, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798452

RESUMO

Signaling between intestinal microbiota and the brain influences neurologic outcome in multiple forms of brain injury. The impact of gut microbiota following traumatic brain injury (TBI) has not been well established. Our objective was to compare TBI outcomes in specific pathogen-free mice with or without depletion of intestinal bacteria. Adult male C57BL6/J SPF mice (n = 6/group) were randomized to standard drinking water or ampicillin (1 g/L), metronidazole (1 g/L), neomycin (1 g/L), and vancomycin (0.5 g/L) (AMNV) containing drinking water 14 days prior to controlled cortical impact (CCI) model of TBI. 16S rRNA gene sequencing of fecal pellets was performed and alpha and beta diversity determined. Hippocampal neuronal density and microglial activation was assessed 72 h post-injury by immunohistochemistry. In addition, mice (n = 8-12/group) were randomized to AMNV or no treatment initiated immediately after CCI and memory acquisition (fear conditioning) and lesion volume assessed. Mice receiving AMNV had significantly reduced alpha diversity (p < 0.05) and altered microbiota community composition compared to untreated mice (PERMANOVA: p < 0.01). Mice receiving AMNV prior to TBI had increased CA1 hippocampal neuronal density (15.2 ± 1.4 vs. 8.8 ± 2.1 cells/0.1 mm; p < 0.05) and a 26.6 ± 6.6% reduction in Iba-1 positive cells (p < 0.05) at 72 h. Mice randomized to AMNV immediately after CCI had attenuated associative learning deficit on fear conditioning test (%freeze Cue: 63.7 ± 2.7% vs. 41.0 ± 5.1%, p < 0.05) and decreased lesion volume (27.2 ± 0.8 vs. 24.6 ± 0.7 mm3, p < 0.05). In conclusion, depletion of intestinal microbiota was consistent with a neuroprotective effect whether initiated before or after injury in a murine model of TBI. Further investigations of the role of gut microbiota in TBI are warranted.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Hipocampo/fisiopatologia , Neurônios/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Lesões Encefálicas Traumáticas/microbiologia , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Hipocampo/microbiologia , Hipocampo/patologia , Inflamação/microbiologia , Inflamação/patologia , Inflamação/fisiopatologia , Camundongos , Neurônios/microbiologia , Neurônios/patologia
9.
J Alzheimers Dis ; 75(4): 1361-1376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390638

RESUMO

BACKGROUND: Porphyromonas gingivalis (P. gingivalis) and its gingipain virulence factors have been identified as pathogenic effectors in Alzheimer's disease (AD). In a recent study we demonstrated the presence of gingipains in over 90% of postmortem AD brains, with gingipains localizing to the cytoplasm of neurons. However, infection of neurons by P. gingivalis has not been previously reported. OBJECTIVE: To demonstrate intraneuronal P. gingivalis and gingipain expression in vitro after infecting neurons derived from human inducible pluripotent stem cells (iPSC) with P. gingivalis for 24, 48, and 72 h. METHODS: Infection was characterized by transmission electron microscopy, confocal microscopy, and bacterial colony forming unit assays. Gingipain expression was monitored by immunofluorescence and RT-qPCR, and protease activity monitored with activity-based probes. Neurodegenerative endpoints were assessed by immunofluorescence, western blot, and ELISA. RESULTS: Neurons survived the initial infection and showed time dependent, infection induced cell death. P. gingivalis was found free in the cytoplasm or in lysosomes. Infected neurons displayed an accumulation of autophagic vacuoles and multivesicular bodies. Tau protein was strongly degraded, and phosphorylation increased at T231. Over time, the density of presynaptic boutons was decreased. CONCLUSION: P. gingivalis can invade and persist in mature neurons. Infected neurons display signs of AD-like neuropathology including the accumulation of autophagic vacuoles and multivesicular bodies, cytoskeleton disruption, an increase in phospho-tau/tau ratio, and synapse loss. Infection of iPSC-derived mature neurons by P. gingivalis provides a novel model system to study the cellular mechanisms leading to AD and to investigate the potential of new therapeutic approaches.


Assuntos
Doença de Alzheimer/microbiologia , Doença de Alzheimer/patologia , Infecções por Bacteroidaceae/complicações , Cisteína Endopeptidases Gingipaínas/metabolismo , Neurônios/microbiologia , Neurônios/patologia , Doença de Alzheimer/enzimologia , Animais , Células Cultivadas , Camundongos , Células-Tronco Neurais/enzimologia , Células-Tronco Neurais/microbiologia , Células-Tronco Neurais/patologia , Neurônios/enzimologia , Porphyromonas gingivalis
10.
Neuropharmacology ; 170: 108067, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32224131

RESUMO

There is accumulating evidence that certain gut microbes modulate brain chemistry and have antidepressant-like behavioural effects. However, it is unclear which brain regions respond to bacteria-derived signals or how signals are transmitted to distinct regions. We investigated the role of the vagus in mediating neuronal activation following oral treatment with Lactobacillus rhamnosus (JB-1). Male Balb/c mice were orally administered a single dose of saline or a live or heat-killed preparation of a physiologically active bacterial strain, Lactobacillus rhamnosus (JB-1). 165 min later, c-Fos immunoreactivity in the brain was mapped, and mesenteric vagal afferent fibre firing was recorded. Mice also underwent sub-diaphragmatic vagotomy to investigate whether severing the vagus prevented JB-1-induced c-Fos expression. Finally, we examined the ΔFosB response following acute versus chronic bacterial treatment. While a single exposure to live and heat-killed bacteria altered vagal activity, only live treatment induced rapid neural activation in widespread but distinct brain regions, as assessed by c-Fos expression. Sub-diaphragmatic vagotomy abolished c-Fos immunoreactivity in most, but not all, previously responsive regions. Chronic, but not acute treatment induced a distinct pattern of ΔFosB expression, including in previously unresponsive brain regions. These data identify that specific brain regions respond rapidly to gut microbes via vagal-dependent and independent pathways, and demonstrate that acute versus long-term exposure is associated with differential responses in distinct brain regions.


Assuntos
Encéfalo/metabolismo , Encéfalo/microbiologia , Lacticaseibacillus rhamnosus/metabolismo , Neurônios/metabolismo , Neurônios/microbiologia , Nervo Vago/metabolismo , Nervo Vago/microbiologia , Administração Oral , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Vagotomia/tendências , Nervo Vago/cirurgia
11.
Med Hypotheses ; 136: 109505, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31765844

RESUMO

Following Braak's hypothesis on the infectious pathogenesis of sporadic Parkinson's disease (sPD), several bacteria and viruses have been investigated as likely culprits. Recent research has focused on neuroinvasive influenza A viruses (IAV), whereas a genetic link between sPD and tuberculosis has arisen in LRRK2 - dependent maturation of the phagosome. An integrative, outside - in, multi - hit hypothesis is presented here, where (a) mycobacterial immunomodulation creates a phagocyte niche along with cytokine mediated, site specific (i.e. the gut) alterations of both immunity and the microbiome, (b) copper modulating IAVs gain latency in and control over phagocytes and their phenotypes, (c) gain access to the central nervous system (CNS) via the olfactory and vagus nerves in subsequent infection cycles, (d) induce indolent neuroinflammation characterized by perturbed intraneuronal copper compartmentalization and (e) produce α - synuclein (aSyn) pathology at least in part via copper - induced aggregation and misfolding as well as potential synergy with other underlying, corroborating factors (either genetic or acquired) contributing to dopaminergic neurodegeneration. This hypothesis explores recently arisen evidence for each step of this process, as well as pre-existing, yet unexplored overlapping pathophysiological characteristics of sPD with mycobacterial and IAV infections. The implications of this proposed pathogenic model extend both in sPD research (i.e. determining non - tuberculous mycobacteria as the first hit organism, inactivating IAV - induced copper hijacking), as well as therapeutics.


Assuntos
Cobre/metabolismo , Imunomodulação , Infecções por Mycobacterium/imunologia , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Viroses/imunologia , Sistema Nervoso Central , Estresse do Retículo Endoplasmático , Epigênese Genética , Humanos , Modelos Teóricos , Mycobacterium , Neurônios/microbiologia , Neurônios/virologia , Estresse Oxidativo , Doença de Parkinson/microbiologia , Doença de Parkinson/virologia , Fenótipo , alfa-Sinucleína/metabolismo
12.
Elife ; 82019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674907

RESUMO

The recognition of pathogens and subsequent activation of defense responses are critical for the survival of organisms. The nematode Caenorhabditis elegans recognizes pathogenic bacteria and elicits defense responses by activating immune pathways and pathogen avoidance. Here we show that chemosensation of phenazines produced by pathogenic Pseudomonas aeruginosa, which leads to rapid activation of DAF-7/TGF-ß in ASJ neurons, is insufficient for the elicitation of pathogen avoidance behavior. Instead, intestinal infection and bloating of the lumen, which depend on the virulence of P. aeruginosa, regulates both pathogen avoidance and aversive learning by modulating not only the DAF-7/TGF-ß pathway but also the G-protein coupled receptor NPR-1 pathway, which also controls aerotaxis behavior. Modulation of these neuroendocrine pathways by intestinal infection serves as a systemic feedback that enables animals to avoid virulent bacteria. These results reveal how feedback from the intestine during infection can modulate the behavior, learning, and microbial perception of the host.


Assuntos
Comportamento Animal , Caenorhabditis elegans/microbiologia , Infecções/metabolismo , Enteropatias/metabolismo , Enteropatias/microbiologia , Aprendizagem , Sistemas Neurossecretores/metabolismo , Transdução de Sinais , Animais , Aprendizagem da Esquiva , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Interações Hospedeiro-Patógeno , Neurônios/metabolismo , Neurônios/microbiologia , Fenazinas , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Virulência
13.
Nano Lett ; 19(9): 5904-5914, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31389707

RESUMO

Sensory neurons promote profound suppressive effects on neutrophils during Streptococcus pyogenes infection and contribute to the pathogenesis of necrotizing infection ("flesh-eating disease"). Thus, the development of new antibacterial agents for necrotizing infection is promising because of the clear streptococcal neuro-immune communication. Herein, based on the immune escape membrane exterior and competitive membrane functions of the glioma cell membrane, a novel nano neuro-immune blocker capsule was designed to prevent neuronal activation and improve neutrophil immune responses for necrotizing infection. These nano neuro-immune blockers could neutralize streptolysin S, suppress neuron pain conduction and calcitonin gene-related peptide release, and recruit neutrophils to the infection site, providing a strong therapeutic effect against necrotizing infection. Furthermore, nano neuro-immune blockers could serve as an effective inflammatory regulator and antibacterial agent via photothermal effects under near-infrared irradiation. In the Streptococcus pyogenes-induced necrotizing fasciitis mouse model, nano neuro-immune blockers showed significant therapeutic efficacy by ameliorating sensitivity to pain and promoting the antibacterial effect of neutrophils.


Assuntos
Antibacterianos/farmacologia , Inflamação/tratamento farmacológico , Necrose/tratamento farmacológico , Dor/tratamento farmacológico , Animais , Antibacterianos/química , Antibacterianos/efeitos da radiação , Proteínas de Bactérias/antagonistas & inibidores , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/efeitos da radiação , Inflamação/microbiologia , Luz , Camundongos , Necrose/microbiologia , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/efeitos da radiação , Neurônios/efeitos dos fármacos , Neurônios/microbiologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/microbiologia , Dor/microbiologia , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/patogenicidade , Estreptolisinas/antagonistas & inibidores
14.
Shock ; 52(1): 75-82, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30052585

RESUMO

We previously corroborated benefits of the Trendelenburg position in the prevention of ventilator-associated pneumonia (VAP). We now investigate its potential effects on the brain versus the semirecumbent position. We studied 17 anesthetized pigs and randomized to be ventilated and positioned as follows: duty cycle (TI/TTOT) of 0.33, without positive end-expiratory pressure (PEEP), placed with the bed oriented 30° in anti-Trendelenburg (control group); positioned as in the control group, with TI/TTOT adjusted to achieve an expiratory flow bias, PEEP of 5 cm H2O (IRV-PEEP); positioned in 5° TP and ventilated as in the control group (TP). Animals were challenged into the oropharynx with Pseudomonas aeruginosa. We assessed hemodynamic parameters and systemic inflammation throughout the study. After 72 h, we evaluated incidence of microbiological/histological VAP and brain injury. Petechial hemorrhages score was greater in the TP group (P = 0.013). Analysis of the dentate gyrus showed higher cell apoptosis and deteriorating neurons in TP animals (P < 0.05 vs. the other groups). No differences in systemic inflammation were found among groups. Cerebral perfusion pressure was higher in TP animals (P < 0.001), mainly driven by higher mean arterial pressure. Microbiological/histological VAP developed in 0%, 67%, and 86% of the animals in the TP, control, and IRV-PEEP groups, respectively (P = 0.003). In conclusion, the TP prevents VAP; yet, we found deleterious neural effects in the dentate gyrus, likely associated with cerebrovascular modification in such position. Further laboratory and clinical studies are mandatory to appraise potential neurological risks associated with long-term TP.


Assuntos
Lesões Encefálicas , Giro Denteado , Infecções por Pseudomonas , Pseudomonas aeruginosa/metabolismo , Respiração Artificial/efeitos adversos , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Apoptose , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/microbiologia , Lesões Encefálicas/patologia , Giro Denteado/lesões , Giro Denteado/metabolismo , Giro Denteado/microbiologia , Neurônios/metabolismo , Neurônios/microbiologia , Neurônios/patologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/patologia , Suínos , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/microbiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
15.
Tuberculosis (Edinb) ; 112: 45-51, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30205968

RESUMO

The present study aimed to investigate the involvement of the angiogenic marker vascular endothelia growth factor (VEGF) and apoptotic markers of Bcl-2 and Bax in the neurons and astrocytes in the brain infected by Mycobacterium tuberculosis. The immunohistochemistry staining was performed to analyze the expression of the VEGF, Bcl-2 and Bax in the astrocytes and neurons. The expression of VEGF was high in neurons and astrocytes in both the infected brain and control tissues with no difference of angiogenic activity (p = 0.40). Higher Bcl-2 expression was seen in astrocytes of infected brain tissues compared to the control tissues (p = 0.004) promoted a higher anti-apoptotic activity in astrocytes. The neurons expressed strong Bax expression in the infected brain tissues compared to the control tissues (p < 0.001), which indicated more apoptosis in neurons. Thus, neuronal death and survival of infected astrocytes together with high expression of VEGF might be associated with formation of brain tuberculosis. In conclusion, neurons could be more vulnerable than astrocytes in human tuberculosis brain with high expression of VEGF.


Assuntos
Apoptose , Astrócitos/metabolismo , Mycobacterium tuberculosis/patogenicidade , Neurônios/metabolismo , Tuberculose do Sistema Nervoso Central/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Astrócitos/microbiologia , Astrócitos/patologia , Estudos de Casos e Controles , Humanos , Neurônios/microbiologia , Neurônios/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Tuberculose do Sistema Nervoso Central/microbiologia , Tuberculose do Sistema Nervoso Central/patologia , Regulação para Cima , Proteína X Associada a bcl-2/metabolismo
16.
PLoS One ; 13(8): e0201829, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30075011

RESUMO

We investigated the contributions of commensal bacteria to brain structural maturation by magnetic resonance imaging and behavioral tests in four and 12 weeks old C57BL/6J specific pathogen free (SPF) and germ free (GF) mice. SPF mice had increased volumes and fractional anisotropy in major gray and white matter areas and higher levels of myelination in total brain, major white and grey matter structures at either four or 12 weeks of age, demonstrating better brain maturation and organization. In open field test, SPF mice had better mobility and were less anxious than GF at four weeks. In Morris water maze, SPF mice demonstrated better spatial and learning memory than GF mice at 12 weeks. In fear conditioning, SPF mice had better contextual memory than GF mice at 12 weeks. In three chamber social test, SPF mice demonstrated better social novelty than GF mice at 12 weeks. Our data demonstrate numerous significant differences in morphological brain organization and behaviors between SPF and GF mice. This suggests that commensal bacteria are necessary for normal morphological development and maturation in the grey and white matter of the brain regions with implications for behavioral outcomes such as locomotion and cognitive functions.


Assuntos
Comportamento Animal , Encéfalo/crescimento & desenvolvimento , Encéfalo/microbiologia , Microbiota , Animais , Comportamento Animal/fisiologia , Encéfalo/diagnóstico por imagem , Contagem de Células , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/microbiologia , Imageamento por Ressonância Magnética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Bainha de Mielina/microbiologia , Neurônios/citologia , Neurônios/microbiologia , Tamanho do Órgão , Comportamento Social , Memória Espacial/fisiologia , Organismos Livres de Patógenos Específicos , Substância Branca/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento , Substância Branca/microbiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-29988402

RESUMO

Both pathogenic and non-pathogenic Mycobacteria can induce the differentiation of immune cells into dendritic cells (DC) or DC-like cells. In addition, pathogenic Mycobacteria is found to stimulate cell differentiation in the nerves system. Whether non-pathogenic Mycobacteria interacts with nerve cells remains unknown. In this study, we found that co-incubation with fast-growing Mycobacteria smegmatis induced neuron-like morphological changes of PC12 and C17.2 cells. Moreover, the M. smegmatis culture supernatant which was ultrafiltrated through a membrane with a 10 kDa cut-off, induced neurite outgrowth and differentiation in an autophagy-independent pathway in PC12 and C17.2 cells. Further analysis showed that IFN-γ production and activation of the PI3K-Akt signaling pathway were involved in the neural differentiation. In conclusion, our finding demonstrated that non-pathogenic M. smegmatis was able to promote neuronal differentiation by its extracellular proteins, which might provide a novel therapeutic strategy for the treatment of neurodegenerative disorders.


Assuntos
Autofagia/imunologia , Diferenciação Celular/imunologia , Mycobacterium smegmatis/imunologia , Crescimento Neuronal/imunologia , Neurônios/microbiologia , Animais , Linhagem Celular , Humanos , Interferon gama/metabolismo , Camundongos , Neurônios/citologia , Neurônios/imunologia , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Ratos
18.
Proc Natl Acad Sci U S A ; 115(25): 6458-6463, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29866843

RESUMO

The enteric nervous system (ENS) is crucial for essential gastrointestinal physiologic functions such as motility, fluid secretion, and blood flow. The gut is colonized by trillions of bacteria that regulate host production of several signaling molecules including serotonin (5-HT) and other hormones and neurotransmitters. Approximately 90% of 5-HT originates from the intestine, and activation of the 5-HT4 receptor in the ENS has been linked to adult neurogenesis and neuroprotection. Here, we tested the hypothesis that the gut microbiota could induce maturation of the adult ENS through release of 5-HT and activation of 5-HT4 receptors. Colonization of germ-free mice with a microbiota from conventionally raised mice modified the neuroanatomy of the ENS and increased intestinal transit rates, which was associated with neuronal and mucosal 5-HT production and the proliferation of enteric neuronal progenitors in the adult intestine. Pharmacological modulation of the 5-HT4 receptor, as well as depletion of endogenous 5-HT, identified a mechanistic link between the gut microbiota and maturation of the adult ENS through the release of 5-HT and activation of the 5-HT4 receptor. Taken together, these findings show that the microbiota modulates the anatomy of the adult ENS in a 5-HT-dependent fashion with concomitant changes in intestinal transit.


Assuntos
Sistema Nervoso Entérico/microbiologia , Sistema Nervoso Entérico/fisiologia , Microbioma Gastrointestinal/fisiologia , Intestino Delgado/microbiologia , Serotonina/metabolismo , Animais , Sistema Nervoso Entérico/metabolismo , Feminino , Motilidade Gastrointestinal/fisiologia , Intestino Delgado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/fisiologia , Neurogênese/fisiologia , Neurônios/metabolismo , Neurônios/microbiologia , Receptores 5-HT4 de Serotonina/metabolismo
19.
Redox Biol ; 17: 377-385, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29857312

RESUMO

Superoxide dismutase, an enzyme that converts superoxide into less-toxic hydrogen peroxide and oxygen, has been shown to mediate behavioral response to pathogens. However, it remains largely unknown how superoxide dismutase is regulated in the nervous system amid pathogen-induced gut dysbiosis. Although there are five superoxide dismutases in C. elegans, our genetic analyses suggest that SOD-1 is the primary superoxide dismutase to mediate the pathogen avoidance response. When C. elegans are fed a P. aeruginosa diet, the lack of SOD-1 contributes to enhanced lethality. We found that guanylyl cyclases GCY-5 and GCY-22 and neuropeptide receptor NPR-1 act antagonistically to regulate SOD-1 expression in the gustatory neuron ASER. After C. elegans ingests a diet that contributes to high levels of oxidative stress, the temporal regulation of SOD-1 and the SOD-1-dependent response in the gustatory system demonstrates a sophisticated mechanism to fine-tune behavioral plasticity. Our results may provide the initial glimpse of a strategy by which a multicellular organism copes with oxidative stress amid gut dysbiosis.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Disbiose/genética , Estresse Oxidativo/genética , Receptores de Neuropeptídeo Y/genética , Superóxido Dismutase/genética , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/metabolismo , Disbiose/enzimologia , Disbiose/microbiologia , Microbioma Gastrointestinal/genética , Regulação Enzimológica da Expressão Gênica , Guanilato Ciclase/genética , Mutação , Neurônios/metabolismo , Neurônios/microbiologia , Neurônios/patologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Receptores de Neuropeptídeo Y/metabolismo , Superóxido Dismutase/metabolismo , Paladar/genética
20.
PLoS One ; 13(5): e0197413, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29746581

RESUMO

Borrelia burgdorferi, the agent of Lyme borreliosis, can elude hosts' innate and adaptive immunity as part of the course of infection. The ability of B. burgdorferi to invade or be internalized by host cells in vitro has been proposed as a mechanism for the pathogen to evade immune responses or antimicrobials. We have previously shown that B. burgdorferi can be internalized by human neuroglial cells. In this study we demonstrate that these cells take up B. burgdorferi via coiling phagocytosis mediated by the formin, Daam1, a process similarly described for human macrophages. Following coincubation with glial cells, B. burgdorferi was enwrapped by Daam1-enriched coiling pseudopods. Coiling of B. burgdorferi was significantly reduced when neuroglial cells were pretreated with anti-Daam1 antibody indicating the requirement for Daam1 for borrelial phagocytosis. Confocal microscopy showed Daam1 colocalizing to the B. burgdorferi surface suggesting interaction with borrelial membrane protein(s). Using the yeast 2-hybrid system for identifying protein-protein binding, we found that the B. burgdorferi surface lipoprotein, BBA66, bound the FH2 subunit domain of Daam1. Recombinant proteins were used to validate binding by ELISA, pull-down, and co-immunoprecipitation. Evidence for native Daam1 and BBA66 interaction was suggested by colocalization of the proteins in the course of borrelial capture by the Daam1-enriched pseudopodia. Additionally, we found a striking reduction in coiling for a BBA66-deficient mutant strain compared to BBA66-expressing strains. These results show that coiling phagocytosis is a mechanism for borrelial internalization by neuroglial cells mediated by Daam1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Borrelia burgdorferi , Doença de Lyme/imunologia , Neurônios/microbiologia , Neutrófilos/metabolismo , Fagocitose , Imunidade Adaptativa , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/metabolismo , Glioma/patologia , Humanos , Imunidade Inata , Lipoproteínas/química , Macrófagos/metabolismo , Proteínas dos Microfilamentos , Neuroglia/metabolismo , Neuroglia/microbiologia , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Técnicas do Sistema de Duplo-Híbrido , Proteínas rho de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...